Finite mixture of compositional regression with gaussian errors
نویسندگان
چکیده
منابع مشابه
Gaussian Process Regression with Location Errors
In this paper, we investigate Gaussian process regression models where inputs are subject to measurement error. In spatial statistics, input measurement errors occur when the geographical locations of observed data are not known exactly. Such sources of error are not special cases of “nugget” or microscale variation, and require alternative methods for both interpolation and parameter estimatio...
متن کاملAdditive Cubic Spline Regression with Dirichlet Process Mixture Errors
The goal of this paper is to develop a flexible Bayesian analysis of regression models for continuous and categorical outcomes. In the models we study, covariate (or regression) effects are modeled additively by cubic splines, and the error distribution (that of the latent outcomes in the case of categorical data) is modeled as a Dirichlet process mixture. We employ a relatively unexplored but ...
متن کاملGeneral Bounds on Bayes Errors for Regression with Gaussian Processes
Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared ...
متن کاملOptimal Inference for Instrumental Variables Regression with non-Gaussian Errors
A . This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness conditions on the error distribution it is possible develop tests which are “nearly” efficient...
متن کاملOptimal Inference for Instrumental Variables Regression with non-Gaussian Errors
A . This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness conditions on the error distribution it is possible develop tests which are “nearly” efficient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Colombiana de Estadística
سال: 2018
ISSN: 2389-8976,0120-1751
DOI: 10.15446/rce.v41n1.63152